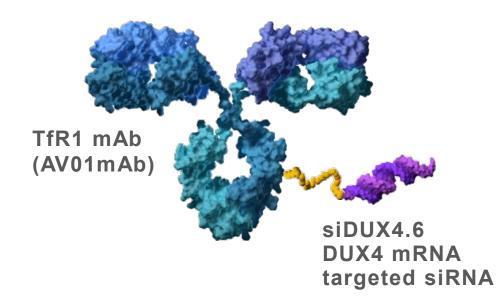



## AOC 1020: An Antibody Oligonucleotide Conjugate (AOC) in Development for the Treatment of FSHD

Barbora Malecova Avidity Biosciences, Inc.



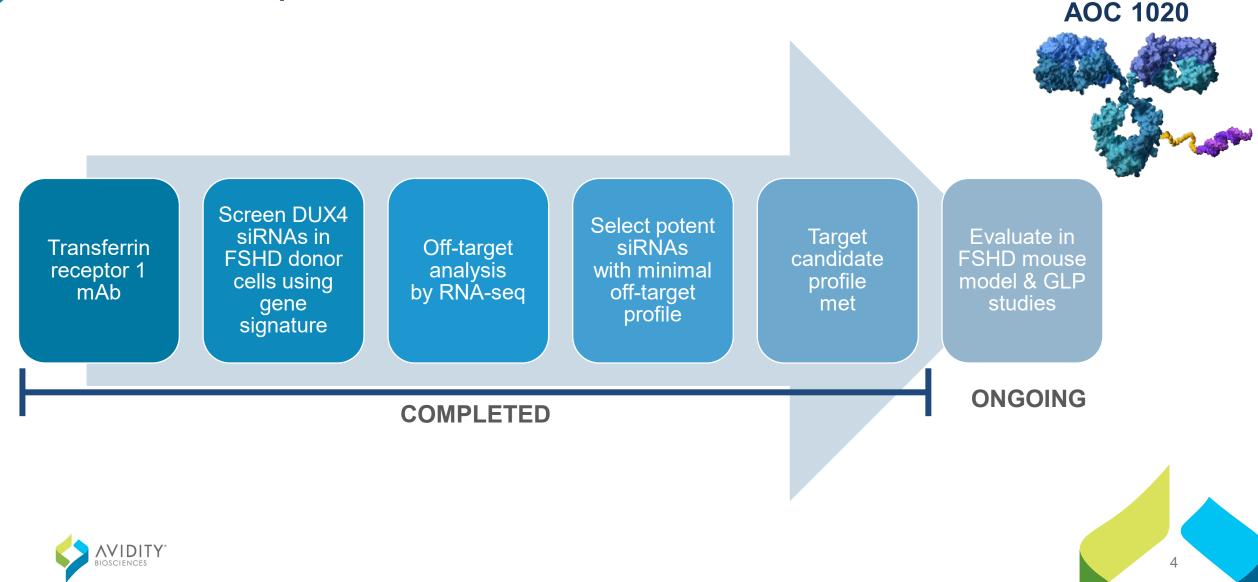
## FSHD is Caused by Aberrant Expression of DUX4 in Muscle DUX4 activates genes that are toxic to muscle cells






1. Lemmers RJLF, et al. *Science*. 2010;329(5999):1650–1653; 2. Snider L, et al. *PLoS Genet*. 2010;6(10):e1001181; 3. Ansseau E, et al. *Genes (Basel)*. 2017;8(3):93; 4. Jiang S, et al. *PLoS Genet*. 2020;16(5):e1008754.

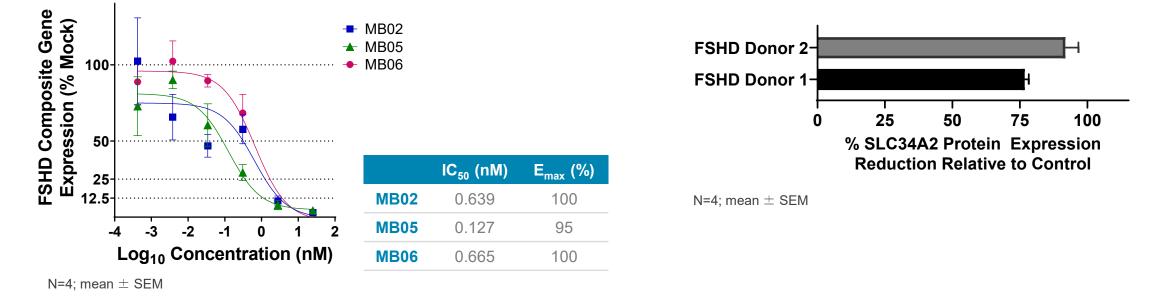
# Avidity's AOC 1020 Targets DUX4 mRNA for Degradation and Eliminates the Cause of FSHD


#### AOC 1020 - ANTIBODY OLIGONUCLEOTIDE CONJUGATE



- AOCs represent a new class of therapeutics allowing delivery of oligonucleotides to target tissues
- Avidity's AOCs combine proven technologies of monoclonal antibodies and oligonucleotides
  - Specificity of targeting
  - Potency & precision of oligonucleotides
  - > Targets tissues with potent and durable agents
- We optimized each of component of AOCs and engineered the molecules to maximize activity, durability, and safety
  - TfR1 mAb: monoclonal antibody directed to human transferrin receptor 1 (TfR1), optimized through engineering to be effector function null, epitope selection for optimal activity, highly efficient delivery to muscle
  - Linker: non-cleavable, enhanced for safety and durability, optimized ratio of oligonucleotides to antibodies
  - siDUX4.6: DUX4 mRNA targeting siRNA; engineered and stabilized to withstand lysosomal enzymes, selected for potency and specificity and modified to diminish off-target effects

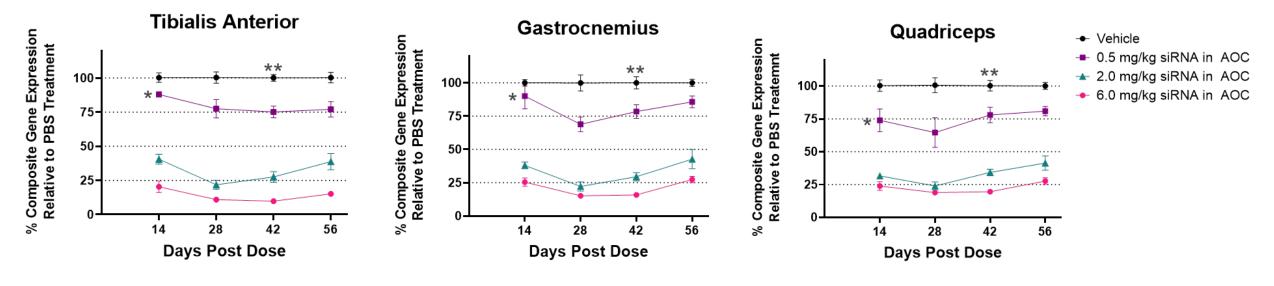



# Development of AOC 1020 as a Potent and Specific Inhibitor of DUX4 Expression



### Lead siRNA Sequence siDUX4.6 Inhibits DUX4-Regulated Genes in FSHD Patient-Derived Muscle Cells

Sub-Nanomolar Potency of the siDUX4.6 Sequence In Vitro in FSHD Primary Patient-Derived Myotubes siDUX4.6 Sequence Inhibits SLC34A2 Protein Expression by >75% in FSHD Donor Myotubes

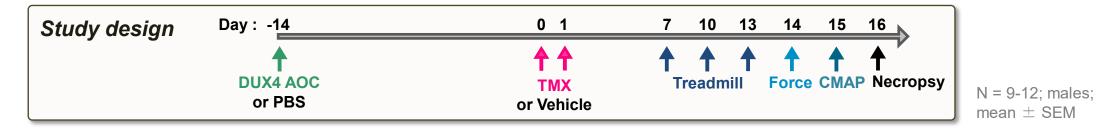

5



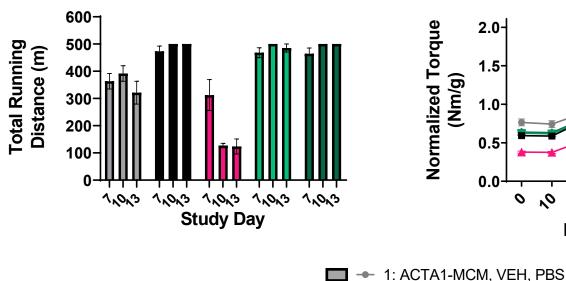
- Robust downregulation of DUX4-regulated genes was observed with the lead siDUX4.6 siRNAs in FSHD donor myotubes in vitro
- FSHD Composite is a mean expression of DUX4-regulated genes KHDC1L, LEUTX, MBD3L2, ZSCAN4



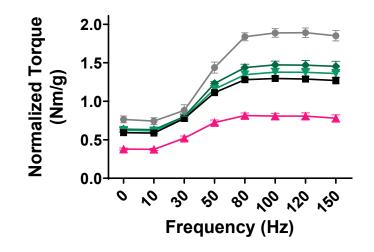
#### siDUX4.6 Shows Potent Inhibition of DUX4-Regulated Genes in Transgenic Mouse Model of FSHD for 8 Weeks Dose-dependent inhibition of DUX4-regulated genes in skeletal muscles




ACTA1-MCM; FLExDUX4 mouse model of FSHD N = 5 (\*N=3; \*\*N=4); mean  $\pm$  SEM


- The siRNA clinical candidate siDUX4.6 demonstrated activity *in vivo* towards the human DUX4 mRNA, measured by downregulation of DUX4-regulated mouse genes Wfdc3, Ilvbl, Slc15a2, Sord.
- Approximately a 75% reduction in DUX4 responsive genes was induced after a single systemic IV administration of 6 mg/kg of siRNA within the AOC (mTfR1-siDUX4.6)




### Single Intravenous Treatment with DUX4 AOC Prevents Disease Phenotype Development in FSHD Mouse Model







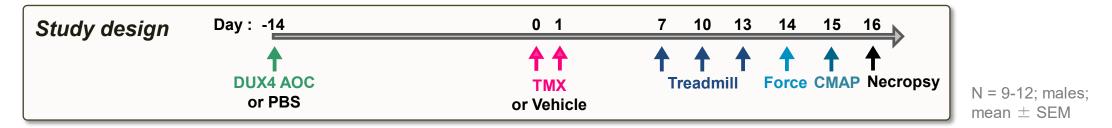
**In Vivo Force** 



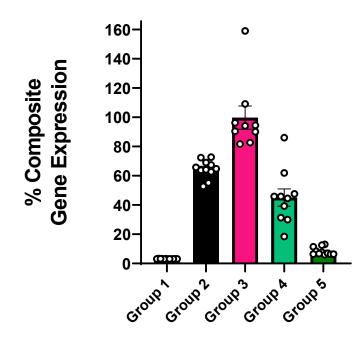
4: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 2 mg/kg (siRNA)

5: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 8 mg/kg (siRNA)

2: ACTA1-MCM; FLExDUX4, VEH, PBS 3: ACTA1-MCM; FLExDUX4, TMX, PBS



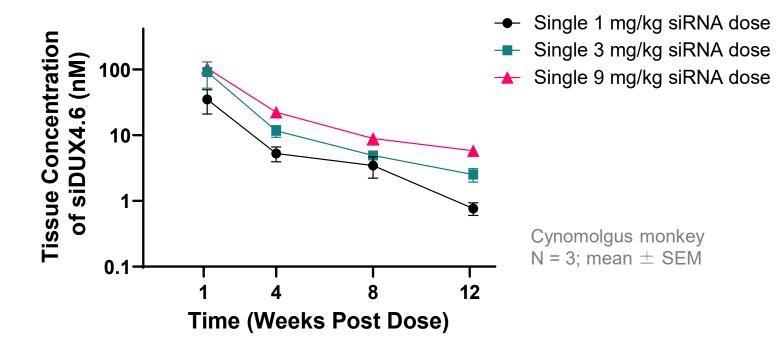





### Single Dose of DUX4 AOC Inhibits DUX4-Regulated Gene Expression in Muscle of Tamoxifen-Induced FSHD Mouse Model




#### **Tibialis Anterior**



- 1: ACTA1-MCM, VEH, PBS
  2: ACTA1-MCM; FLExDUX4, VEH, PBS
  3: ACTA1-MCM; FLExDUX4, TMX, PBS
  4: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 2 mg/kg (siRNA)
  5: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 8 mg/kg (siRNA)
  - The siRNA clinical candidate siDUX4.6 robustly inhibits expression of DUX4-regulated mouse genes (Wfdc3, IIvbl, Slc15a2, Sord) in skeletal muscle 1 month after single IV administration at therapeutically relevant doses.



# AOC 1020 PK Results in NHP Muscle Tissue Support an Infrequent Dosing Regimen for FSHD Patients



- AOC 1020 produced dose-dependent increase in siRNA tissue exposure in skeletal muscle tissues following single systemic IV doses
- The muscle tissue concentration for siDUX4.6 in NHP at therapeutically relevant doses is above IC50 values that we typically observed for other TfR1-based AOCs
- Based on our data, we anticipate this will allow for an infrequent dose schedule in the clinic



## AOC 1020 is On-Track to be in the Clinic by the End of 2022

#### • siDUX4.6:

- Was selected as clinical candidate siRNA targeting DUX4 mRNA, having an activity across all tested 11 FSHD patient-derived muscle cell lines, with a sub-nanomolar potency *in vitro*
- Demonstrates efficacy in vitro by downregulating a panel of known DUX4-regulated genes in FSHD patient-derived myotubes
- Demonstrates a dose-dependent activity and long duration of action (8 weeks) after single systemic IV dose *in vivo* in FSHD mouse model expressing human DUX4
- Prevents a muscle weakness development after 2 and 8 mg/kg (siRNA within AOC) single systemic IV dose in FSHD mouse model
- Has minimal seed-mediated off-target profile in human muscle cells
- AOC 1020 is currently in GLP toxicology studies
- Avidity is planning to enter the clinic with AOC 1020 for treatment of FSHD by end of 2022



### Authors and Acknowledgements

#### **Authors**

**Avidity Biosciences, Inc:** Barbora Malecova, David Sala, Garineh Melikian, Gulin Erdogan, Rachel Johns, Arthur A. Levin, Michael Flanagan

CYTOO: Joanne Young, Erwann Ventre

The Jackson Laboratory: Orsolya Kiraly

Monoceros Biosystems LLC: Sole Gatto, Matthew Onorato

**LGC Axolabs GmbH:** Martin Koegler, Philipp Hadwiger, Lukas Perkams

#### **Acknowledgements**

Avidity Biosciences, Inc: Oliver Dansereau, Samuel Beppler, Eileen Blasi, Varun Goel, Danny Arias, Arvind Bhattacharya, Theresa Falls, Maryam Jordan, Marc Hartmann, Giuseppe Dello Iacono, Subbarao Nallagatla, Karla Schramm, Hanhua Huang

Altasciences: Vivienne Bunker, Satoru Oneda

Monoceros Biosystems LLC: David Nickle, Adam Pavlicek

