

AOC 1020: An Antibody Oligonucleotide Conjugate (AOC) in Development for the Treatment of FSHD

Barbora Malecova Avidity Biosciences, Inc.

FSHD: Resulting in Lifelong, Progressive Loss of Muscle Function

AFFECTS ~16,000 - 38,000 PEOPLE IN THE US^{1,2}

APPROVED THERAPIES³

- One of the most common forms of muscular dystrophy¹
- Rare, hereditary, progressive muscle-weakening condition that causes significant pain, fatigue, and disability^{1,4}
- Onset often in teenage and adult years⁴
- Steady loss of independence and ability to care for oneself⁴
- 20% of patients become wheelchair dedpendent⁴
- Autosomal dominant multiple genes can be affected^{5,6}
- Caused by aberrant double homeobox 4 (DUX4) gene expression^{5,6}

DUX4, double homeobox 4; FSHD, facioscapulohumeral dystrophy; US, United States.

1. Deenen JCW, et al. *Neurology*. 2014;83(12):1056-1059; 2. US Census Bureau. Quick Facts. https://www.census.gov/quickfacts/fact/table/US/ [Last Accessed February 2022]; 3. Cohen J, et al. *Trends Mol Med*. 2021;27(2):123-137; 4. Tawil R and Van Der Maarel SM. *Muscle Nerve*. 2006;34(1):1–15; 5. Lemmers RJLF, et al. *Science*. 2010;329(5999):1650–1653; 6. Snider L, et al. *PLoS Genet*. 2010;6(10):e1001181.

FSHD is Caused by Aberrant Expression of DUX4 in Muscle DUX4 activates genes that are toxic to muscle cells

AOC, anitbody-oligonucleotide conjugate.
1. Lemmers RJLF, et al. *Science*. 2010;329(5999):1650–1653; 2. Snider L, et al. *PLoS Genet*. 2010;6(10):e1001181;
3. Yao et al. *Hum Mol Genet*. 2014;23(20):5342-52.

Avidity's AOC 1020 Targets DUX4 mRNA for Degradation and Eliminates the Cause of FSHD

AOC 1020 - ANTIBODY OLIGONUCLEOTIDE CONJUGATE

- AOCs represent a new class of therapeutics allowing delivery of oligonucleotides to target tissues
- Avidity's AOCs combine proven technologies of monoclonal antibodies and oligonucleotides
 - Specificity of targeting
 - Potency & precision of oligonucleotides
 - > Targets tissues with potent and durable agents
- We optimized each of component of AOCs and engineered the molecules to maximize activity, durability, and safety
 - TfR1 mAb: monoclonal antibody directed to human transferrin receptor 1 (TfR1), optimized through engineering to be effector function null, epitope selection for optimal activity, highly efficient delivery to muscle
 - Linker: non-cleavable, enhanced for safety and durability, optimized ratio of oligonucleotides to antibodies
 - siDUX4.6: DUX4 mRNA targeting siRNA; engineered and stabilized to withstand lysosomal enzymes, selected for potency and specificity and modified to diminish off-target effects

Lead siRNA Sequence siDUX4.6 Inhibits DUX4-Regulated Genes in FSHD Patient-Derived Muscle Cells

Sub-Nanomolar Potency of the siDUX4.6 Sequence In Vitro in FSHD Primary Patient-Derived Myotubes

- Robust downregulation of DUX4-regulated genes was observed with the lead siDUX4.6 siRNAs in FSHD donor myotubes *in vitro*
- FSHD Composite is a mean expression of DUX4-regulated genes KHDC1L, LEUTX, MBD3L2, ZSCAN4¹

siDUX4.6 Shows Potent Inhibition of DUX4-Regulated Genes in Transgenic Mouse Model of FSHD for 8 Weeks Dose-dependent inhibition of DUX4-regulated genes in skeletal muscles

ACTA1-MCM; FLExDUX4 mouse model of FSHD¹ N = 5 (*N=3; **N=4); mean \pm SEM

- The siRNA clinical candidate siDUX4.6 demonstrated activity *in vivo* towards the human DUX4 mRNA, measured by downregulation of DUX4-regulated mouse genes Wfdc3, Ilvbl, Slc15a2, Sord^{1,2}.
- Demonstrated ~75% inhibition of DUX4 responsive genes following IV administration of 6 mg/kg dose (siRNA in mTfR1-siDUX4.6 AOC)

Single IV Treatment with DUX4 AOC Prevents Disease Phenotype Development in Tamoxifen-Induced FSHD Mouse Model¹

✓ 4: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 2 mg/kg (siRNA)

5: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 8 mg/kg (siRNA)

Fotal Running

CMAP, compound muscle action potential; PBS, phosphate-buffered saline; SEM, standard error of the mean; TMX, tamoxifen; VEH, vehicle. 1. Jones TI, et al. Skelet Muscle. 2020;10(1):8.

Single Dose of DUX4 AOC Inhibits DUX4-Regulated Gene Expression in Muscle of Tamoxifen-Induced FSHD Mouse Model

- **Tibialis Anterior**
- 1: ACTA1-MCM, VEH, PBS
 2: ACTA1-MCM; FLExDUX4, VEH, PBS
 3: ACTA1-MCM; FLExDUX4, TMX, PBS
 4: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 2 mg/kg (siRNA)
 5: ACTA1-MCM; FLExDUX4, TMX, DUX4 AOC 8 mg/kg (siRNA)
 - The siRNA clinical candidate siDUX4.6 robustly inhibits expression of DUX4-regulated mouse genes (Wfdc3, Ilvbl, Slc15a2, Sord)^{1,2} in skeletal muscle 1 month after single IV administration at therapeutically relevant doses.

AOC 1020 PK Results in NHP Muscle Tissue Support an Infrequent Dosing Regimen for FSHD Patients

- AOC 1020 produced dose-dependent increase in siRNA tissue exposure in skeletal muscle tissues following single systemic IV doses
- The muscle tissue concentration for siDUX4.6 in NHP at therapeutically relevant doses is above IC50 values that we typically observed for other TfR1-based AOCs
- Based on our data, we anticipate this will allow for an infrequent dose schedule in the clinic

Data Support the Evaluation of AOC 1020 in the Phase 1/2 FORTITUDE Clinical Trial

- siDUX4.6:
 - Was selected as clinical candidate siRNA targeting DUX4 mRNA, having an activity across all tested 11 FSHD patient-derived muscle cell lines, with a sub-nanomolar potency in vitro
 - Demonstrates efficacy in vitro by downregulating a panel of known DUX4-regulated genes in FSHD patient-derived myotubes
 - Demonstrates a dose-dependent activity and long duration of action (8 weeks) after single systemic IV dose *in vivo* in FSHD mouse model expressing human DUX4
 - Prevents a muscle weakness development after 2 and 8 mg/kg (siRNA within AOC) single systemic IV dose in FSHD mouse model
 - > Has minimal seed-mediated off-target profile in human muscle cells
- Avidity is evaluating AOC 1020 in the Phase 1/2 FORTITUDE clinical trial in adults with FSHD

Authors and Acknowledgements

Authors

Avidity Biosciences, Inc: Barbora Malecova, David Sala, Garineh Melikian, Gulin Erdogan, Rachel Johns, Maryam Jordan, Marc Hartmann, Danny Arias, Arvind Battacharya, Ramana Doppalapudi, Hanhua Huang, Michael Flanagan, Arthur A. Levin

Acknowledgements

Avidity Biosciences, Inc: Oliver Dansereau, Samuel Beppler, Eileen Blasi, Varun Goel, Theresa Falls, Giuseppe Dello Iacono, Subbarao Nallagatla, Karla Schramm

The Jackson Laboratory: Orsolya Kiraly

Altasciences: Vivienne Bunker, Satoru Oneda

Monoceros Biosystems LLC: Sole Gatto, Matthew Onorato, David Nickle, Adam Pavlicek

CYTOO: Joanne Young, Erwann Ventre

LGC Axolabs GmbH: Martin Koegler, Philipp Hadwiger, Lukas Perkams

