Targeting DUX4 for Silencing with AOC for the Treatment of FSHD

Barbora Malecova, David Sala, Garineh Mary Melikian, Nathan Delos Santos, Gulin Erdogan, Rachel Johns, Maryam Jordan, Marc Hartmann, Ramana Doppalapudi, Hanhua Huang, Michael Flanagan, Arthur Levin

Avidity Biosciences, San Diego, CA, USA

Disclosures: This poster is sponsored by Avidity Biosciences, Inc. Authors are employees of Avidity Biosciences, Inc. and may have stock options or an ownership interest.

Background **Results (Continued)** • Facioscapulohumeral dystrophy (FSHD) is a rare genetic muscular disorder, usually presenting with slow-progressing Figure 4: Single Dose of DUX4 AOC Inhibits DUX4-Regulated Gene Expression in Muscle of Tamoxifen-Induced and asymmetric muscle weakness.¹ **FSHD Mouse Model** • The cause of FSHD is aberrant expression of the transcription factor DUX4 in skeletal muscle, leading to a series of downstream **Tibialis Anterior** 160 events that result in skeletal muscle degeneration and wasting. Strategies aimed at reducing DUX4 expression in the skeletal muscle of FSHD patients are promising therapeutic approaches.^{2–7} 140 osite Gene ession [%] 120 - 1: ACTA1-MCM, VEH, PBS • Clinical development of oligonucleotide therapeutics for muscle diseases has been limited due to difficulty delivering oligonucleotides • The siRNA clinical candidate siDUX4.6 100 into muscle.⁵ Avidity's antibody oligonucleotide conjugates (AOC[™]) platform combines the specificity of transferrin receptor 1 (TfR1)---- 2: ACTA1-MCM:FLExDUX4. VEH. PBS robustly inhibits expression of DUX4-80 directed monoclonal antibodies for muscle delivery with the potency and precision of small interfering RNA (siRNA) in reducing → 3: ACTA1-MCM;FLExDUX4, TMX, PBS regulated mouse genes (Wfdc3, Ilvbl,

- target RNA expression.
- Avidity has conducted a comprehensive *in vitro* screening of a DUX4 siRNA library in a variety of FSHD patient-derived muscle cells, which allowed selection of highly potent siRNA sequences with minimal off-target profile. The selected siDUX4.6 siRNA was conjugated to the murine TfR1 antibody to generate DUX4 AOC. A robust, dose-dependent response was observed for 8 weeks following a single intravenous (IV) dose of DUX4 AOC, with 75% or higher reduction of DUX4-regulated genes in skeletal muscle of the ACTA1-MCM;FLExDUX4 mouse model of FSHD.
- Data presented herein provide rationale and support for entering the clinic with AOC 1020 for the treatment of FSHD.

Results

Figure 1: Lead siRNA Sequence siDUX4.6 Inhibits DUX4-Regulated Genes in FSHD Patient-Derived Muscle Cells

Slc15a2, *Sord*)^{9,10} in skeletal muscle 1 month after single IV administration at therapeutically relevant doses

Figure 5A: DUX4 AOC Treatment Prevents Global FSHD Disease-Related Gene Expression Response in Muscle of FSHD Mouse Model

> Clustermap: All Differentially Expressed Genes from Comparing TMX_PBS vs. WT_VEH_PBS (Absolute logFC > 1.0, Adjusted P Value < 0.01, 3,961 Genes)

• FSHD Composite is a mean expression of DUX4-regulated genes KHDC1L, LEUTX, MBD3L2, ZSCAN4⁸

Figure 2: siDUX4.6 Shows Potent Inhibition of DUX4-Regulated Genes in Transgenic Mouse Model of FSHD for 8 Weeks After Single Dose

Dose-dependent inhibition of DUX4-regulated genes in skeletal muscles

- The siRNA clinical candidate siDUX4.6 demonstrated activity *in vivo* towards the human *DUX4* mRNA, measured by downregulation of DUX4-regulated mouse genes Wfdc3, Ilvbl, Slc15a2, Sord^{9,10}
- Approximately a 75% reduction in DUX4 responsive genes was induced after a single systemic IV administration of 6 mg/kg of siRNA within the AOC (mTfR1-siDUX4.6)

Figure 3: Single Intravenous Treatment With DUX4 AOC Prevents Disease Phenotype Development in FSHD **Mouse Model**

- RNA-seq analysis of TA muscle identifies 3,961 genes with significant responses in a tamoxifen-induced FSHD mouse model, many of which correlate with functional outcomes (force and CMAP measurements)
- Treatment with DUX4 AOC prevents this disease gene expression response, reflected by treated samples clustering with normal controls

Figure 5B: RNA-Seq Analysis of TA Muscle Identifies Hallmark Gene Sets⁸ With Significant Enrichment Responses in a Tamoxifen-Induced FSHD Mouse Model

	Avidity's Pathway Analysis				
Jones et al. 2020		Disease Response		DUX4 AOC Treatment Response	
GO Superterms	Hallmark gene set	NES	FWER (<i>P</i> -val)	NES	FWER (<i>P</i> -val)
Apoptosis	Apoptosis	2.013	0.006	-1.990	0.009
Muscle	Myogenesis	2.064	0.003	-2.105	0.001
Immune	Inflammatory Response	1.820	0.045	-1.866	0.034
Cell cycle	G2m Checkpoint	1.896	0.025	-1.977	0.009
Cell cycle	Mitotic Spindle	1.823	0.044	-1.780	0.075

- Treatment with DUX4 AOC prevents this disease gene set response, reflected by significant enrichment responses in the opposite direction from tamoxifen induction
- Four pathways with significant enrichment responses with DUX4 AOC treatment show a dysregulation in disease in the opposite direction, but their significance in disease response does not match the stringent FWER P value threshold of 0.01
- This mouse model recapitulates some DUX4-activated pathways observed in FSHD disease. The myopathic, apoptotic and immune infiltration pathways consistent with FSHD¹² and the effect of DUX4 AOC treatment on these pathways are depicted in the adjacent table

Conclusion

- siDUX4.6:
- Was selected as clinical candidate siRNA targeting *DUX4* mRNA, having an activity across all tested 11 FSHD patient-derived muscle cell lines, with a sub-nanomolar potency *in vitro*
- Demonstrates efficacy *in vitro* by downregulating a panel of known DUX4-regulated genes in FSHD patient-derived myotubes
- Demonstrates a dose-dependent activity and long duration of action (8 weeks) after single systemic IV dose in vivo in FSHD mouse model expressing human DUX4
- Prevents a muscle weakness development after 2 and 8 mg/kg (siRNA within AOC) single systemic IV dose in FSHD mouse model
- Has minimal seed-mediated off-target profile in human muscle cells

• Avidity is evaluating AOC 1020 in the Phase 1/2 FORTITUDE™ clinical trial in adults with FSHD

Acknowledgments

• Avidity Biosciences, Inc: Eileen Blasi, Varun Goel, Theresa Falls, Giuseppe Dello Iacono, Subbarao Nallagatla, Karla Schramm, Oliver Dansereau, Samuel Beppler • CYTOO: Joanne Young, Erwann Ventre • The Jackson Laboratory: Orsolya Kiraly

• Monoceros Biosystems LLC: Sole Gatto, Matthew Onorato, David Nickle, Adam Pavlicek • LGC Axolabs GmbH: Martin Koegler, Philipp Hadwiger, Lukas Perkams • Altasciences: Vivienne Bunker, Satoru Oneda

References

1. Tawil R, et al. Neuromuscul Disord. 2010;20(7):471-5. 2. Bouwmann LF, et al. Curr Opin Neurol. 2020;33(5):635-40. 3. Ansseau E, et al. Genes. 2017;88(3):93. 4. Le Gall L, et al. J Clin Med. 2020;7(9):2886. 5. Roberts TC, et al. Nat Rev Drug Discov. 2020;19(10):673-94. 6. Lemmers RJLF, et al. Science. 2010;329(5999):1650-3. 7. Snider L, et al. PLoS Genet. 2010;6(10):e1001181. 8. Yao Z, et al. Hum Mol Genet. 2014;23(20):5342-52. 9. Whiddon JL, et al. Nat Genet. 2017;49(6):935-40. 10. Jones T and Jones PL. PLoS One. 2018;13(2):e0192657. 11. Liberzon A, et al. Cell Syst. 2015;1(6):417-25. 12. Jones TI, et al. Skelet Muscle. 2020;10(1):8.

Abbreviations

AOC, antibody oligonucleotide conjugate; CMAP, compound muscle action potential; FSHD, facioscapulohumeral dystrophy; FWER, family-wise error rate; IV, intravenous; mRNA, messenger RNA; NES, normalized enrichment score; PBS, phosphate-buffered saline; RNA, ribonucleic acid; RT-qPCR, quantitative reverse transcription polymerase chain reaction; SEM, standard error of the mean; siRNA, small interfering RNA; TA, tibialis anterior; TfR1, transferrin receptor 1; TMX, tamoxifen; VEH, vehicle.

MDA Clinical & Scientific Conference | Orlando, FL | March 3–6, 2024